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The natural convective boundary-layer flow of a nanofluid past a vertical plate is studied analytically. The
model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A
similarity solution is presented. This solution depends on a Lewis number Le, a buoyancy-ratio number
Nr, a Brownian motion number Nb, and a thermophoresis number Nt. For various values of Pr and Le, the
variation of the reduced Nusselt number with Nr, Nb and Nt is expressed by correlation formulas. It was
found that the reduced Nusselt number is a decreasing function of each of Nr, Nb and Nt.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The term ‘‘nanofluid‘‘ refers to a liquid containing a suspension
of submicronic solid particles (nanoparticles). The term was
coined by Choi [1]. The characteristic feature of nanofluids is
thermal conductivity enhancement, a phenomenon observed by
Masuda et al. [2]. This phenomenon suggests the possibility of
using nanofluids in advanced nuclear systems (Buongiorno and
Hu [3]).

A comprehensive survey of convective transport in nanofluids
was made by Buongiorno [4], who says that a satisfactory expla-
nation for the abnormal increase of the thermal conductivity and
viscosity is yet to be found. He focused on the further heat transfer
enhancement observed in convective situations. Buongiorno notes
that several authors have suggested that convective heat transfer
enhancement could be due to the dispersion of the suspended
nanoparticles but he argues that this effect is too small to explain
the observed enhancement. Buongiorno also concludes that
turbulence is not affected by the presence of the nanoparticles so
this cannot explain the observed enhancement. Particle rotation
has also been proposed as a cause of heat transfer enhancement,
but Buongiorno calculates that this effect is too small to explain the
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effect. With dispersion, turbulence and particle rotation ruled out
as significant agencies for heat transfer enhancement, Buongiorno
proposed a new model based on the mechanics of the nanoparticle/
base-fluid relative velocity.

Buongiorno [4] noted that the nanoparticle absolute velocity
can be viewed as the sum of the base fluid velocity and a relative
velocity (that he calls the slip velocity). He considered in turn
seven slip mechanisms: inertia, Brownian diffusion, thermopho-
resis, diffusiophoresis, Magnus effect, fluid drainage, and gravity
settling. After examining each of these in turn, he concluded that
in the absence of turbulent effects it is the Brownian diffusion and
the thermophoresis that will be important. Buongiorno pro-
ceeded to write down conservation equations based on these two
effects.

The problem of natural convection in a regular fluid past
a vertical plate is a classical problem first studied theoretically by E.
Pohlhausen in a contribution to an experimental study by Schmidt
and Beckmann [5]. Unfortunately the boundary-layer scaling used
by early researchers and text book authors did not properly
incorporate the dependence on the Prandtl number. Exceptions are
provided by the papers by Kuiken [6,7]. The situation was clarified
by Bejan [8]. An extension to the case of heat and mass transfer was
made by Khair and Bejan [9].

In this paper we extend the study of the Pohlhausen–Kuiken–
Bejan problem to the case of a nanofluid using the model of
Buongiorno [4]. A similarity solution is obtained.
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Nomenclature

DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
f rescaled nanoparticle volume fraction, defined by Eq.

(20)
g gravitational acceleration vector
k thermal conductivity
Le Lewis number, defined by Eq. (28)
Nr buoyancy-ratio parameter, defined by Eq. (25)
Nb Brownian motion parameter, defined by Eq. (26)
Nt thermophoresis parameter, defined by Eq. (27)
Nu Nusselt number, defined by Eq. (31)
Nur reduced Nusselt number, Nu=Ra1=4

x
Pr Prandtl number, defined by Eq. (24)
p pressure
q00 wall heat flux
Rax local Rayleigh number, defined by Eq. (18)
s dimensionless stream function, defined by Eq. (20)
T temperature
Tw temperature at the vertical plate
TN ambient temperature attained as y tends to infinity

v velocity,(u, v)
(x, y) Cartesian coordinates (x-axis is aligned vertically

upwards, plate is at y¼ 0)

Greek symbols
a thermal diffusivity
b volumetric expansion coefficient of the fluid
h similarity variable, defined by Eq. (19)
q dimensionless temperature, defined by Eq. (20)
m dynamic viscosity of the fluid
n kinematic viscosity, m/rfN

rf fluid density
rp nanoparticle mass density
(rc)f heat capacity of the fluid
(rc)p effective heat capacity of the nanoparticle material
s parameter defined by Eq. (13), (rc)p/(rc)f

4 nanoparticle volume fraction
4w nanoparticle volume fraction at the vertical plate
4N ambient nanoparticle volume fraction attained

as y tends to infinity
j stream function, defined by Eq. (14)
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2. Analysis

We consider a two-dimensional problem. We select a coordi-
nate frame in which the x-axis is aligned vertically upwards. We
consider a vertical plate at y¼ 0. At this boundary the temperature
T and the nanoparticle fraction 4 take constant values Tw and 4w,
respectively. The ambient values, attained as y tends to infinity, of T
and 4 are denoted by TN and 4N, respectively.

The Oberbeck–Boussinesq approximation is employed. The
following four field equations embody the conservation of total
mass, momentum, thermal energy, and nanoparticles, respectively.
The field variables are the velocity v, the temperature T and the
nanoparticle volume fraction 4.

V$v ¼ 0; (1)

rf

�
vv
vt
þ v$Vv

�
¼ �Vpþ mV2v þ

h
frp þ ð1� fÞ

n
rf ð1

� bðT � TNÞÞ
oi

g; (2)

ðrcÞf
�

vT
vt
þ v$VT

�
¼ kV2T þ ðrcÞp½DBVf$VT þ ðDT=TNÞVT$VT�;

(3)

vf

vt
þ v$Vf ¼ DBV2fþ ðDT=TNÞV2T : (4)

We write v¼ (u,v).
Here rf is the density of the base fluid and m, k and b are the

density, viscosity, thermal conductivity and volumetric volume
expansion coefficient of the nanofluid, while rp is the density of
the particles. The gravitational acceleration is denoted by g. The
coefficients that appear in Eqs. (3) and (4) are the Brownian
diffusion coefficient DB and the thermophoretic diffusion coef-
ficient DT. Details of the derivation of Eqs. (3) and (4) are given
in the papers by Buongiorno [4] and Nield and Kuznetsov
[10,11].
The boundary conditions are taken to be

u ¼ 0; v ¼ 0; T ¼ Tw; f ¼ fw at y ¼ 0; (5)

u ¼ v ¼ 0; T/TN; f/fN as y/N: (6)

We consider a steady state flow.
In keeping with the Oberbeck–Boussinesq approximation and

an assumption that the nanoparticle concentration is dilute, and
with a suitable choice for the reference pressure, we can linearize
the momentum equation and write equation (2) as

rf

�
vv
vt
þ v$Vv

�
¼ �Vpþ mV2v þ

h�
rp � rfN

�
ðf� fNÞ

þ ð1� fNÞrfNbðT � TNÞ
i
g: (7)

We now make the standard boundary-layer approximation,
based on a scale analysis, and write the governing equations

vu
vx
þ vv

vy
¼ 0; (8)

vp
vx
¼ m

v2u
vy2 � rf

�
u

vu
vx
þ v

vu
vy

�
þ
h
ð1� fNÞrfNbgðT � TNÞ

�
�

rp � rfN

�
gðf� fNÞ

i
(9)

vp
vy
¼ 0; (10)

u
vT
vx
þ v

vT
vy
¼ aV2T þ s

"
DB

vf

vy
vT
vy
þ
�

DT

TN

��
vT
vy

�2
#
; (11)

u
vf

vx
þ v

vf

vy
¼ DB

v2f

vy2
þ
�

DT

TN

�
v2T
vy2

: (12)

where



Table 1
Comparison test results. Values of the reduced Nusslet number Nur ¼ Nu=Ra1=4

x in
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a ¼ k
; s ¼

ðrcÞp
: (13)
the limiting case of a regular fluid. The present results are with hmax¼ 10, Le¼ 10,
Nr¼Nb¼Nt¼ 10�5.

Pr 1 10 100 1000
Nur (Bejan [8]) 0.401 0.465 0.490 0.499
Nur (present) 0.401 0.463 0.481 0.484
ðrcÞf ðrcÞf
One can eliminate p from Eqs. (9) and (10) by cross-differenti-

ation. At the same time one can introduce a stream function j

defined by

u ¼ vj

vy
; v ¼ �vj

vx
; (14)

so that Eq. (8) is satisfied identically.
We are then left with the following three equations.

vj

vy
v2j

vxvy
� vj

vx
v2j

vy2 � n
v3j

vy3 ¼ ð1� fNÞrfNbgðT � TNÞ

�
�

rp � rfN

�
gf (15)

vj

vy
vT
vx
� vj

vx
vT
vy
¼ aV2T þ s

"
DB

vf

vy
vT
vy
þ
�

DT

TN

��
vT
vy

�2
#
; (16)

vj

vy
vf

vx
� vj

vx
vf

vy
¼ DB

v2f

vy2 þ
�

DT

TN

�
v2T
vy2 : (17)

In deriving Eq. (15) an integration with respect to y has been
performed, and use has been made of the boundary conditions at
infinity. Here n¼ m/rfN.

We now introduce the local Rayleigh number Rax defined by

Rax ¼
ð1� fNÞbgðTw � TNÞx3

na
; (18)

and the similarity variable

h ¼ y
x

Ra1=4
x : (19)

This choice is made on the basis of scale analysis. Since most
nanofluids examined to date have large values for the Lewis
number Le, we are interested mainly in the case Le> 1. Also we are
interested in the case where it is heat transfer (rather than mass
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Fig. 1. Plots of dimensionless similarity functions s(h), ds(h)/dh, q(h), f(h) for the case
Pr¼ 10, Le¼ 10, Nr¼ 0.5, Nb¼ 0.5, Nt¼ 0.5. These represent the distributions of
stream function, longitudinal velocity, temperature, and nanoparticle volume fraction,
respectively.
transfer) that is driving the flow. In the present context this means
that we are assuming that the buoyancy-ratio parameter Nr defined
by Eq. (25) below is small compared with unity and that the Lewis
number Le defined by Eq. (28) is larger than unity.

We also introduce the dimensionless variables s, q, and f defined
by

sðhÞ ¼ j

a Ra1=4
x

; qðhÞ ¼ T � TN

Tw � TN
; f ðhÞ ¼ f� fN

fw � fN
: (20)

Then, on substitution in Eqs. (15–17), we obtain the ordinary
differential equations

s000 þ 1
4Pr

�
3ss00 � 2s02

�
þ q� Nrf ¼ 0; (21)

q00 þ 3
4

sq0 þ Nbf 0q0 þ Ntq02 ¼ 0; (22)

f 00 þ 3
4

Lesf 0 þ Nt
Nb

q00 ¼ 0; (23)

where the five parameters are defined by

Pr ¼ n

a
; (24)

Nr ¼

�
rp � rfN

�
ðfw � fNÞ

rfNbðTw � TNÞð1� fNÞ
; (25)

Nb ¼
ðrcÞpDBðfw � fNÞ

ðrcÞf a
; (26)

Nt ¼
ðrcÞpDTðTw � TNÞ
ðrcÞf aTN

; (27)

Le ¼ a

DB
: (28)

Here Nr, Nb, Nt, Le denote a buoyancy ratio, a Brownian motion
parameter, a thermophoresis parameter, and a Lewis number,
respectively.

Equations (21–23) are solved subject to the following boundary
conditions:
Table 2a
Case Le¼ 10. Linear regression coefficients and error bound for the reduced Nusselt
number. Here Cr, Cb, Ct, are the coefficients in the linear regression estimate
Nuest=Ra1=4

x ¼ NurPKB þ CrNrþ CbNbþ CtNt, and 3 is the maximum relative error
defined by 3 ¼ jðNuest � NuÞ=Nuj, applicable for Nr, Nb, Nt each in [0, 0.5]. Variation
with Prandtl number is displayed.

Pr NurPKB Cr Cb Ct 3

1 0.401 –0.047 –0.224 –0.137 0.083
2 0.465 –0.055 –0.256 –0.160 0.084
5 0.490 –0.064 –0.271 –0.172 0.098
10 0.499 –0.071 –0.279 –0.180 0.111



Table 2b
Case Pr¼ 10. Linear regression coefficients and error bound for the reduced Nusselt
number, as for Table 2a. Variation with Lewis number is displayed.

Le NurPKB Cr Cb Ct 3

5 0.465 –0.076 –0.224 –0.162 0.085
10 0.465 –0.055 –0.256 –0.160 0.084
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At h ¼ 0 : s ¼ 0; s0 ¼ 0; q ¼ 1; f ¼ 1: (29)

As h/N : s0 ¼ 0; q ¼ 0; f ¼ 0: (30)

When Nr, Nb and Nt are all zero, Eqs. (21) and (22) involve just
two dependent variables, namely s and q, and the boundary-value
problem for these two variables reduces to the classical Pohlhau-
sen–Kuiken–Bejan problem. (The boundary-value problem for f
then becomes ill-posed and is of no physical significance).

A quantity of practical interest is the Nusselt number Nu defined
by

Nu ¼ q00x
kðTw � TNÞ

; (31)

where q
00

is the wall heat flux. In the present context Nu=Ra1=4
x

(something that we shall refer to as the reduced Nusselt number
and denote by Nur) is represented by �q

0
(0). (Likewise the

dimensionless mass flux is represented by a Sherwood number Sh
proportional to �f

0
(0), but this of lesser interest here).

3. Results and discussion

The Pohlhausen–Kuiken–Bejan (PKB) problem for a regular fluid
involves just one independent dimensionless parameter, namely
the Prandtl number, Pr. The present extension involves four more
independent dimensionless parameters: Le, Nr, Nb, and Nt. Hence
we need to be very selective in our choice of parameter values. It is
also imperative that the computational time for each set of input
parameter values should be short. One source of error is inevitable,
because the physical domain is unbounded whereas the compu-
tational domain has to be finite. One has to apply the far field
boundary conditions at a finite value of the similarity variable h

here denoted by hmax. We ran our bulk calculations with the value
hmax¼ 10. We compared the resulting calculated values for the
special case of a regular fluid with those reported in Table 4.2 in
Bejan [8], with the results shown in Table 1. The error becomes
worse as Pr increases, and our computed value is about 3% too small
when Pr¼ 1000. Since our main objective is to explore the influ-
ence of the parameters Le, Nr, Nb and Nt, we regard a systematic
error of this magnitude as acceptable for our present purpose.

We will present the results of our investigation of the effect of
the parameters Nr, Nb and Nt on Nur, for various values of Pr and Le.

Plots of the dependent similarity variables for a typical case,
chosen as that for Pr¼ 10, Le¼ 10, Nr¼ 0.5, Nb¼ 0.5, Nt¼ 0.5, are
shown in Fig. 1. The boundary-layer profiles for the temperature
function q (h) and the stream function s(h) have essentially the
same form as in the case of a regular fluid. As one would expect, the
Table 3a
Case Le¼ 10. Quadratic regression coefficients and error bound for the reduced Nusselt nu
regression estimate Nuest=Ra1=2

x ¼ NurPKB þ Cr1Nrþ Cb1Nbþ Ct1Ntþ Cr2Nr2 þ Cb2Nb2 þ
by 3 ¼ jðNuest � NuÞ=Nuj, applicable for Nr, Nb, Nt each in [0, 0.5]. Variation with Prand

Pr NurPKB Cr1 Cb1 Ct1 Cr2 C

1 0.401 �0.041 �0.273 �0.171 �0.002 0
10 0.465 �0.052 �0.312 �0.201 0.001 0
100 0.490 �0.071 �0.337 �0.224 0.016 0
1000 0.499 �0.086 �0.354 �0.241 0.028 0
thermal boundary-layer thickness is less than the momentum
boundary-layer thickness when Pr> 1. The thickness of the
boundary-layer for the mass fraction function f(h) is smaller than
the thermal boundary-layer thickness when Le> 1. We have
checked that these profiles change little as the parameters Nr, Nb
and Nt are varied.

For the case Pr¼ 10, Le¼ 10, the value of Nu=Ra1=4
x (something

that we will refer to as the reduced Nusselt number and denote by
Nur) was calculated for 125 sets of values of Nr, Nb, Nt in the range
[0.1, 0.2, 0.3, 0.4, 0.5] and a linear regression was performed on the
results. This yielded the correlation

Nurest ¼ 0:465� 0:055Nr� 0:256Nb� 0:160Nt; (32)

valid for Nr, Nb, Nt each taking values in the range [0, 0.5], with
a maximum error of about 8%. Clearly an increase in any of the
buoyancy-ratio number Nr, the Brownian motion parameter Nb, or the
thermophoresis parameter Nt leads to a decrease in the value of
the reduced Nusselt number (corresponding to an increase in the
thermal boundary-layer thickness). The maximum error occurs at the
extreme end of the range considered, namely when (Nr, Nb, Nt)¼ (0.5,
0.5, 0.5), and the correlation formula overestimates the reduction from
the standard fluid value 0.465.

This exercise was repeated for other values of Pr and Le, with the
results shown in Tables 2a and 2b. (We found numerical difficulty
with small (close to unity) and very large values of Le so the
variation with Le is circumscribed.) These results show that the
coefficient of Nt varies little as Le varies. This result is to be
expected since, from the form of Eq. (23), one can anticipate that
when Le is large the variable f

0
will decay rapidly as h increases, and

then since the term in Nt in Eq. (22) does not involve f one can
anticipate that the contribution from Nt will not depend markedly
on the value of Le. On the other hand, the magnitude of the coef-
ficient of Nr decreases markedly as Le increase while the magnitude
of the coefficient of Nt changes in the other direction. Finally from
comparison with Table 1 we observe that the accuracy of the linear
regression estimate increases as Le increases but decreases as Pr
increases.

We believe that for most practical purposes the simple linear
regression formula in Eq. (32) should be adequate. If one wants
a more accurate formula then one can perform a quadratic
regression. For the case Pr¼ 10, Le¼ 10, for example, we obtained
instead of Eq. (32) the formula

Nurest ¼ 0:465� 0:052Nr� 0:312Nb� 0:201Nt� 0:001Nr2

þ 0:035Nb2 þ 0:047Nt2 þ 0:128NbNt� 0:002NtNr

þ 0:071NrNb;

(33)

which gives a maximum error of just 0.9% over the same range. The
relatively large interactions between Nr and Nb (displayed by the
coefficient of the last term in Eq. (33)), and between Nb and Nt
(displayed by the coefficient of the third to last term in Eq. (33)) are
of interest. Values of the coefficients for some other cases are
presented in Tables 3a and 3b.
mber. Here Cr1, Cr2, Cb1, Cb2, Ct1, Ct2, Cbt, Ctr, and Crb are the coefficients in the quadratic
Ct2Nt2 þ CbtNbNtþ CtrNtNrþ CrbNrNb, and 3 is the maximum relative error defined

tl number is displayed.

b2 Ct2 Cbt Ctr Crb 3

.031 0.038 0.111 �0.005 0.060 0.009

.035 0.047 0.128 �0.002 0.071 0.009

.047 0.062 0.145 �0.009 0.087 0.013

.059 0.075 0.157 0.020 0.099 0.019



Table 3b
Case Pr¼ 10. Linear regression coefficients and error bound for the reduced Nusselt number, as for Table 2a. Variation with Lewis number is displayed.

Le NurPKB Cr1 Cb1 Ct1 Cr2 Cb2 Ct2 Cbt Ctr Crb 3

5 0.465 �0.079 �0.262 �0.204 �0.009 0.034 0.046 0.149 �0.023 0.129 0.024
10 0.465 �0.052 �0.312 �0.201 0.001 0.035 0.047 0.128 �0.002 0.071 0.009
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4. Conclusions

We have examined the influence of nanoparticles on natural
convection boundary-layer flow past a vertical plate, using a model
in which Brownian motion and thermophoresis are accounted for.
In this pioneering study we have assumed the simplest possible
boundary conditions, namely those in which both the temperature
and the nanoparticle fraction are constant along the wall. This
permits a simple similarity solution which depends on five
dimensionless parameters, namely a Prandtl number Pr, a Lewis
number Le, a buoyancy-ratio parameter Nr, a Brownian motion
parameter Nb, and a thermophoresis parameter Nt. We have
explored the way in which the wall heat flux, represented by
a Nusselt number Nu and then scaled in terms of Rax

1/4 to produce
a reduced Nusselt number, depends on these five parameters. Since
we are dealing with the case of convection driven mainly by heat
transfer we expect that the boundary condition on the nanoparticle
fraction is of lesser importance. Our prime result is that the reduced
Nusselt number is a decreasing function of each of nanofluid
numbers Nr, Nb and Nt.
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